Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia.

نویسندگان

  • Eyal Nof
  • David Luria
  • Dovrat Brass
  • Dina Marek
  • Hadas Lahat
  • Haya Reznik-Wolf
  • Elon Pras
  • Nathan Dascal
  • Michael Eldar
  • Michael Glikson
چکیده

BACKGROUND The hyperpolarization-activated nucleotide-gated channel--HCN4 plays a major role in the diastolic depolarization of sinus atrial node cells. Mutant HCN4 channels have been found to be associated with inherited sinus bradycardia. METHODS AND RESULTS Sixteen members of a family with sinus bradycardia were evaluated. Evaluation included a clinical questionnaire, 12-lead ECGs, Holter monitoring, echocardiography, and treadmill exercise testing. Eight family members (5 males) were classified as affected. All affected family members were asymptomatic with normal exercise capacity during long-term follow-up. Electrophysiological testing performed on 2 affected family members confirmed significant isolated sinus node dysfunction. Segregation analysis suggested autosomal-dominant inheritance. Direct sequencing of the exons encoding HCN4 revealed a missense mutation, G480R, in the ion channel pore domain in all affected family members. Function analysis, including expression of HCN4 wild-type and G480R in Xenopus oocytes and human embryonic kidney 293 cells, revealed that mutant channels were activated at more negative voltages compared with wild-type channels. Synthesis and expression of the wild-type and mutant HCN4 channel on the plasma membrane tested in human embryonic kidney 293 cells using biotinylation and Western blot analysis demonstrated a reduction in synthesis and a trafficking defect in mutant compared with wild-type channels. CONCLUSIONS We describe an inherited, autosomal-dominant form of sinus node dysfunction caused by a missense mutation in the HCN4 ion channel pore. Despite its critical location, this mutation carries a favorable prognosis without the need for pacemaker implantation during long-term follow-up.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Familial inappropriate sinus tachycardia: a new chapter in the story of HCN4 channelopathies.

The sinoatrial node (SAN) contains a small number of pacemaker cells (PCs), specialized cardiomyocytes whose automatic firing triggers each heart beat. Autonomic and endocrine modulation of PC automaticity enables precise neurohormonal regulation of heart rate (HR) in accordance with physiological demand. While the cellular mechanisms that underlie HR regulation are complex and still actively d...

متن کامل

Pacemaker channel dysfunction in a patient with sinus node disease.

The cardiac pacemaker current I(f) is a major determinant of diastolic depolarization in sinus nodal cells and has a key role in heartbeat generation. Therefore, we hypothesized that some forms of "idiopathic" sinus node dysfunction (SND) are related to inherited dysfunctions of cardiac pacemaker ion channels. In a candidate gene approach, a heterozygous 1-bp deletion (1631delC) in exon 5 of th...

متن کامل

Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel.

We found that sinus bradycardia in members of a large family was associated with a mutation in the gene coding for the pacemaker HCN4 ion channel. Pacemaker channels of the sinoatrial node generate spontaneous activity and mediate cyclic AMP (cAMP)-dependent autonomic modulation of the heart rate. The mutation associated with bradycardia is located near the cAMP-binding site; functional analysi...

متن کامل

The HCN4 channel mutation D553N associated with bradycardia has a C-linker mediated gating defect.

BACKGROUND/AIMS The D553N mutation located in the C-linker of the cardiac pacemaker channel HCN4 is thought to cause sino-atrial dysfunction via a pronounced dominant-negative trafficking defect. Since HCN4 mutations usually have a minor defect in channel gating, it was our aim to further characterize the disease causing mechanism of D553N. METHODS Fluorescence microscopy, FACS, TEVC and patc...

متن کامل

Targeting miR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia

RATIONALE Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 116 5  شماره 

صفحات  -

تاریخ انتشار 2007